Your success starts and ends with NK® and Enogen® hybrids for silage. From standout digestibility, high tonnage potential and the nutritional quality you demand, we are here to help you realize your herd’s true potential. Exhaustive research and development is paired with products that put seed for silage in your hands faster.

You get stronger genetics, revolutionary technologies and an always-on approach to fuel your farm, every day.

what’s inside

AGRONOMIC INFORMATION
2 Choosing Your Silage Hybrid
4 Tools to Manage Silage Yield and Quality Components
6 Harvest Adjustments to Manage Silage Yield and Quality
8 Approaches to Characterizing Hybrid Quality

NK SILAGE
9 Key NK Silage Hybrid Profiles
12 NK Silage Hybrid Portfolio

ENOGEN SILAGE
14 Key Enogen Silage Hybrid Profiles
16 Enogen Silage Hybrid Portfolio

The Field Forged Series™ brings together our highest performers to drive your profit potential.

Look for the Field Forged icon on the product pages to see which products are in the Field Forged Series.
Choosing Your Silage Hybrid

Relative Maturity (RM)
Planting hybrids up to 10 days longer than an adapted full-season grain hybrid can offer potential yield advantages and typically still reach harvest before fall frost risk in most areas. If fields can be used for grain harvest, it may not be possible to increase RM as much. RM selection also needs to consider planting date spreads and the capability to harvest fields in a given time.

Root Strength
Hybrid root strength is important to ensure that plants are standing well to chop at an efficient speed.

Disease Tolerance
Many silage acres will often be in continuous corn acres, resulting in higher risk of potential disease presence. Hybrid selection should consider tolerance to diseases such as Gray Leaf Spot, Northern Corn Leaf Blight and other regionalized diseases such as Tar Spot. In addition, foliar fungicide applications can also help to reduce disease risk in fields.

Test Weight
Test weight is a measure of corn grain bulk density that is sometimes associated with kernel texture. Test weight tends to increase as grain becomes drier. Test weight is loosely related to kernel hardness, which is also known to influence livestock feed-to-gain ratio in feeder cattle; however, as silage is harvested at a higher moisture content, it is not as great a predictor of silage quality.

Staygreen
Hybrids with good late-season health or staygreen are known to better maintain green leaf area for a longer period. Staygreen can help to widen harvest windows and ensure proper plant moisture to minimize poor silage pit packing, spoilage and mold damage. Staygreen should not be used heavily for expanding the harvest window, as some hybrids will rapidly lose kernel moisture while leaves remain healthy and create a starch-protein matrix that is hard to digest. Kernel processors can help to improve starch digestibility once grain moisture starts to drop.

Insect Trait Selection
Silage acres often lack crop rotation because of ground limitations and feed needs. Consecutively planting multiple years of corn greatly increases the risk of insect populations and potential damage from insects. Trait selection should consider potential risk of damage from both above- and below-ground pests and diseases that can supervise insect damage.

- Corn rootworm risk increases with each consecutive year of corn rotations. *Duracade™* traited hybrids and/or *Force® Brand Insecticide* may help mitigate risk.
- Ear-feeding insects, such as western bean cutworm and corn earworm, can reduce grain and starch in feed rations. The Vip3A protein, offered in *DuracadeViptera™* and *Viptera™* traited hybrids, is currently the only protein registered in traits for western bean cutworm protection.
- Mycotoxins can occur for a variety of reasons, but they are often associated with pathogen infection of grain following insect feeding damage. Ear protection with insect traits can indirectly help to reduce potential risk of silage mycotoxin contamination.

![Graph showing MYCOTOXIN REDUCTION WITH VIPTERA TRAIT](image-url)

- **Fumonisin Level in Grain (mg/kg)**
 - Viptera Trait: 0.31
 - ECB Trait Only: 1.45
 - No Insect Trait: 3.33

![Image of corn plant with text overlay](image-url)
Tools to Manage Silage Yield and Quality Components

Corn silage provides a source of high-energy forage for dairy cows and it can provide a low-cost ration for fattening cattle. Depending on your goals, a variety of different approaches to management can be used to adjust specific quality (starch and fiber digestibility) and potential yield outputs when growing silage.

Seeding Rate

Seeding rates are routinely adjusted for corn produced for grain to optimize yield potential. Increasing grain yield with higher seeding rates also increases overall silage tonnage up to a point, but simultaneously reduces quality. The increased plant biomass from additional plants tends to dilute starch contributed from grain, resulting in higher fiber levels. As a result, milk per acre of silage can be increased with higher seeding rates, but milk per ton will inversely decrease. Increasing seeding rates from 2,000 to 4,000 over normal corn grain seeding rates will typically maximize both yield potential and quality.

Seeding Rate Influence on Silage Quality and Yield*

<table>
<thead>
<tr>
<th>Seeding Rate (seeds/A)</th>
<th>Milk/Acre (lbs/A)</th>
<th>Milk/Ton (lbs/Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,000</td>
<td>13,000</td>
<td>1,800</td>
</tr>
<tr>
<td>24,000</td>
<td>13,500</td>
<td>1,850</td>
</tr>
<tr>
<td>30,000</td>
<td>14,000</td>
<td>1,900</td>
</tr>
<tr>
<td>36,000</td>
<td>14,500</td>
<td>1,950</td>
</tr>
<tr>
<td>42,000</td>
<td>15,000</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Planting Date

Corn for silage or grain responds similarly to delayed planting. There is minimal impact on yield potential until planting is delayed into late May or June. It is common to see tonnage loss of one ton per week if planting after the last week in May; however, reasonable yield potential can still be achieved with June plantings. Energy levels are likely to reduce in later-planted silage as a result of lower starch levels from reduced grain fill.

Foliar Fungicide Application

Managing disease in silage corn can be just as important as when managing corn for grain. Previous research has illustrated how fungicides can improve both silage yield potential and quality before harvest and during the ensiling process.

- **Pre-Harvest Benefits:** Fungicide applications can prevent fungal diseases in the field, which can preserve leaf area to improve tonnage and possibly reduce the number of fungal pathogens ensiled within corn.
 - **Fungal Diseases** have also been known to cause a plant defense mechanism in which cell walls increase lignin content after being infected by pathogens, resulting in lower silage quality. Fungicide applications have shown the ability to minimize this lignin increase and improve silage quality with neutral detergent fiber (NDF) reductions and increased neutral detergent fiber digestibility (NDFd) and starch content.
- **Ensiling Benefits:** Research has shown increased levels of lactic acid during the silage ensiling process when corn receives foliar fungicides. Lactic acid is important for lowering pH levels to preserve silage for feeding later. Reducing fungal pathogens with foliar fungicides likely increases the lactic acid content and the fermentative quality of corn silage.

Response to R1 Application of Miravis Neo Fungicide

<table>
<thead>
<tr>
<th>Ton/Acre @ 65%</th>
<th>Milk/Ton</th>
<th>3 Year Average (2018-2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>30.6</td>
<td>3,225</td>
</tr>
<tr>
<td>Miravis Neo</td>
<td>35.6</td>
<td>3,546</td>
</tr>
</tbody>
</table>

3 Year Average (2018-2020)
Harvest Adjustments to Manage Silage Yield and Quality

Harvest Timing and Moisture Content
One of the most important management factors is aligning harvest timing to maximize nutrient value and deliver silage moistures that best fit the storage type. Silage at a moisture higher than target will ferment poorly and lose nutrients, whereas silage that is too dry will pack poorly, causing mold and spoilage. Recommended moisture contents are:

- 65%-70% for horizontal silos
- 63%-68% for conventional tower silos
- 55%-60% for limited-oxygen silos
- 65% for silo bags

Finer chop will improve packing in all silo types, but it is especially important in upright silos where there is less opportunity to adjust pack methods. Recommendations for theoretical cut length of unprocessed silage range from 3/8 to 3/4 inch in length and 3/4 inch for silage processed with 1-2 mm roller clearance.

Kernel Processor
As kernels begin to mature, a starch-protein matrix forms that makes digestion more difficult. Kernel processors installed on choppers smash kernels to increase starch digestibility. The value of processing kernels may not be observed with corn in early milkline stages, but it typically provides nutritional advantages if harvesting milkline stages at half or later.
Fiber Digestibility

Because of the relatively large amount of silage being in the form of stover, understanding fiber digestibility is important when corn silage is the largest portion of feed rations.

The relative fiber digestibility of a hybrid is largely dependent on how much lignin is present in silage. Lignin is the undigestible fiber that has no energy value to animals and helps compose the total fiber content of forage, expressed as neutral detergent fiber (NDF). Corn silage with a low NDF is desirable. Neutral detergent fiber digestibility (NDFd) measures the amount of NDF that can be digested, and larger values are more desirable. Hybrids vary significantly in quality due to fiber content and digestibility.

Starch Digestibility

Increased starch digestibility is known to improve energy availability for dairy cows, thereby improving milk production, feed efficiency, or both*. Besides hybrid differences, multiple management practices, such as harvest timing, kernel processing and length of time in storage, can greatly affect starch digestibility. Short-stature hybrids or raising chopping height can quickly reduce stover-to-grain ratio, resulting in higher starch content as well.

Whole-Plant Digestibility

Total digestible nutrients (TDN) describes the energy content of feed as the sum of the digestibility of different nutrients. TDN is often based on calculations using acid detergent fiber (ADF) which is a low-cost and rapid turnaround method to predict energy content. Significant variations in fiber digestibility often cause inaccuracies in ADF values, and TDN values tend to underestimate forage feeding values.

*Firkins et al., 2001; Ferraretto et al., 2013

Insect protection, herbicide tolerance and other traits.

Primary (dark blue) and, where applicable, secondary (light blue) areas of adaptation for this hybrid series. Areas are suggested; performance may vary.
NK9175 • NK9175-DV Brand

Superior grain yield potential, forage yields and high NDF digestibility make this widely adapted hybrid a top dual-purpose corn for dairy producers.
- Very high grain content and high NDF digestibility produce silage with high energy density
- Strong performance at above-average populations
- Outstanding drought and cool tolerance in the Northern Corn Belt; adapts well to all tillage systems

NK9231 • NEW NK9231-AA Brand

Excellent yield potential with versatility across variable and drought-prone soils.
- Tall and robust with high-grain yields, stability, and late-stalkage, making this widely adapted hybrid a top dual-purpose corn for dairy producers
- Outstanding drought and cool weather tolerance in the Northern Corn Belt, with good adaptation to all tillage systems
- Very high grain content with high stalk values to produce silage with high energy density
- Strong performance at moderate populations across variable and high-yielding soils

NK0007 • NEW NK0007-AA Brand

Excellent yield potential with strong roots and stalks.
- Adaptable to a broad range of soils
- Excellent roots, stalks and late-season plant health with excellent staygreen
- Medium plant type with a determinate ear, high starch values which responds to population
- Excellent dual-purpose silage potential and high stanch content

NK0243 • NK0243-D Brand • NK0243-AA Brand

Adaptability to a broad range of soils.
- Excellent roots, stalks and late-season plant health with excellent staygreen
- Robust plant with wide leaves and a big canopy that responds to higher fertility
- Medium plant with a large flex ear and vitreous stalk
- Excellent dual-purpose silage potential and high stanch content

NK0440 • NK0440-AE Brand

Tall, excellent dual-purpose hybrid offers very high yield potential of quality silage with superior drought tolerance.
- Semi-flex ear type to handle diverse environments
- High yield potential as a high-moisture or dual-purpose silage hybrid
- Soft kernel texture for increased rumen efficiency and high forage starch potential

NK1239 • NK1239-D Brand

Improved plant integrity with better roots and stalks for this maturity.
- Strong ability to perform as a dual-purpose silage hybrid at higher management levels in rotated or continuous corn across the Central and Eastern Corn Belt
- Tall, leafy, extremely vigorous hybrid for cooler soils and all tillage environments
- High levels of forage stalk and silage tonnage combined with strong NDF digestibility for strong, dual-purpose silage

NK1755 • NEW NK1755-DV Brand

Very good choice for dual-purpose silage and grain.
- Tall, high-yielding, dual-purpose silage hybrid with excellent drought tolerance combined with strong emergence to work across many tillage systems
- Moderate populations across variable soils to maximize performance in lower water-holding environments
- Strong performance in central, eastern and western environments
- Works well for dairy or beef operations with high NDF and strong silage yields

NK1838 • NEW NK1838-310 Brand

High yield potential hybrid that excels in productive environments.
- Tall, excellent dual-purpose hybrid offers very high yields of quality silage with superior drought tolerance
- Flex ear type to handle diverse environments along with high yield potential as a high-moisture or dual-purpose silage hybrid
- Soft kernel texture for increased rumen efficiency and high forage starch potential
- Better southern and western movement
<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>MATURITY</th>
<th>CHARACTERISTICS</th>
<th>DISEASE TOLERANCE</th>
<th>AGRONOMIC RESEARCH RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Agromonic</td>
<td>Plant</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emergence</td>
<td>Root Growth</td>
<td>Stalk Height</td>
</tr>
<tr>
<td>NK8005</td>
<td>80</td>
<td>3 3 1 1 5 4</td>
<td>- 4 -</td>
<td>f b g g g g g g g g g g</td>
</tr>
<tr>
<td>NK0204</td>
<td>82</td>
<td>3 2 4 4 4</td>
<td>4 - 4 -</td>
<td>f g g f g g g g g g g g</td>
</tr>
<tr>
<td>NK5159</td>
<td>85</td>
<td>3 4 2 3 3</td>
<td>4 - 4 -</td>
<td>g g g g g g b b b b b b b</td>
</tr>
<tr>
<td>NK0691</td>
<td>86</td>
<td>3 5 3 5 5</td>
<td>5 - 5 -</td>
<td>g g g g g g b b b b b b b</td>
</tr>
<tr>
<td>NK7601</td>
<td>87</td>
<td>2 2 2 4 4</td>
<td>4 4 2</td>
<td>f g g f g g g g g g g g</td>
</tr>
<tr>
<td>NK8681</td>
<td>88</td>
<td>3 3 1 4 3 5</td>
<td>5 -</td>
<td>g g b g g g f f g f g f</td>
</tr>
<tr>
<td>NK9234</td>
<td>90</td>
<td>4 5 3 5 2</td>
<td>5 -</td>
<td>g f g f f f f f f f f f</td>
</tr>
<tr>
<td>NK5795</td>
<td>91</td>
<td>3 5 1 5 4</td>
<td>4 4 2</td>
<td>g g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK2297</td>
<td>92</td>
<td>2 1 1 3 2</td>
<td>- 4 3</td>
<td>g f g f f g f g g g g g</td>
</tr>
<tr>
<td>NK2131</td>
<td>92</td>
<td>2 5 2 2 2</td>
<td>3 6 4</td>
<td>b g b b b b b b b b b b</td>
</tr>
<tr>
<td>NK3347</td>
<td>93</td>
<td>3 3 5 4 5</td>
<td>3 4 4</td>
<td>g g f g g g g g g g g g</td>
</tr>
<tr>
<td>NK5539</td>
<td>94</td>
<td>3 3 2 2 3 3 4</td>
<td>3 3 3</td>
<td>b b b g g g g g g g g g</td>
</tr>
<tr>
<td>NK8893</td>
<td>95</td>
<td>2 2 2 2 2 3 4</td>
<td>2 2 2</td>
<td>b b b g b g g g g g g g</td>
</tr>
<tr>
<td>NK9891</td>
<td>99</td>
<td>2 3 5 3 2</td>
<td>5 4</td>
<td>f g g g g g g f g g g</td>
</tr>
<tr>
<td>NK0007</td>
<td>100</td>
<td>2 2 2 5 5 3</td>
<td>6 4</td>
<td>f b g b b b b b b b b b</td>
</tr>
<tr>
<td>NK2423</td>
<td>102</td>
<td>3 3 2 5 5 3</td>
<td>5 3</td>
<td>g g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK5314</td>
<td>103</td>
<td>3 3 3 5 3 4</td>
<td>3 4 3</td>
<td>f g f g g g g g g g g g</td>
</tr>
<tr>
<td>NK2130</td>
<td>103</td>
<td>3 4 5 5 5 3</td>
<td>4 4 4</td>
<td>g g g g g g f g g g g g</td>
</tr>
<tr>
<td>NK3574</td>
<td>104</td>
<td>4 4 5 5 3</td>
<td>3 4 4</td>
<td>g g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK4772</td>
<td>104</td>
<td>4 5 4 4 2</td>
<td>3 4 3</td>
<td>g f g g g g g g g g g g</td>
</tr>
<tr>
<td>NK2224</td>
<td>104</td>
<td>3 4 5 5 3</td>
<td>5 4 5</td>
<td>b g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK4208</td>
<td>106</td>
<td>4 2 3 5 5 4</td>
<td>3 4 5</td>
<td>b g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK6196</td>
<td>106</td>
<td>2 2 3 5 5 4</td>
<td>3 4 3</td>
<td>b g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK7461</td>
<td>107</td>
<td>3 3 5 3 3 3</td>
<td>3 3 5</td>
<td>g f f g g g g g g g g g</td>
</tr>
<tr>
<td>NK8201</td>
<td>108</td>
<td>3 1 5 4 5</td>
<td>4 3 4</td>
<td>g g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK9717</td>
<td>108</td>
<td>3 2 2 5 5 4</td>
<td>5 5 4</td>
<td>g g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK1352</td>
<td>109</td>
<td>4 1 5 5 5 5</td>
<td>4 4 4</td>
<td>g g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK2526</td>
<td>110</td>
<td>4 3 5 3 3 2</td>
<td>2 3 3</td>
<td>g f g g g g g g g g g g</td>
</tr>
<tr>
<td>NK3582</td>
<td>110</td>
<td>2 5 1 5 5 8</td>
<td>4 3 4</td>
<td>g g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK2938</td>
<td>111</td>
<td>3 3 4 4 4 6</td>
<td>4 6 6</td>
<td>g g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK3239</td>
<td>112</td>
<td>3 3 3 4 2 2</td>
<td>4 3 3</td>
<td>e f f g f g g g g g g</td>
</tr>
<tr>
<td>NK3491</td>
<td>113</td>
<td>3 3 2 4 2 2</td>
<td>3 3 3</td>
<td>g b g b g b b b b b b b</td>
</tr>
<tr>
<td>NK3541</td>
<td>113</td>
<td>2 2 5 3 4 4</td>
<td>4 3 4</td>
<td>g g g g g g g g g g g g</td>
</tr>
<tr>
<td>NK2666</td>
<td>114</td>
<td>3 2 3 4 2 2</td>
<td>4 3 3</td>
<td>g b g b g b b b b b b b</td>
</tr>
<tr>
<td>NK1542</td>
<td>114</td>
<td>3 2 2 2 2 2</td>
<td>4 3 3</td>
<td>g b g b g b b b b b b b</td>
</tr>
<tr>
<td>NK1601</td>
<td>114</td>
<td>2 2 2 4 3 5</td>
<td>4 4 2</td>
<td>g b g g b b b b b b b b</td>
</tr>
</tbody>
</table>

Yield: Calculated on a per-acre basis and adjusted to standard moisture.

Neutral Detergent Fiber 48 Hour (NDF 48 hr): Measure of the indigestible and slowly digestible components of the silage.

Neutral Detergent Fiber Digestibility 48 Hour (NDFd 48 hr): Estimates the ruminal digestibility of the NDF fraction.

Starch: Indicates the percentage of feed component that is starch.

Total Digestible Nutrients (TDN): Sum of the digester's different nutrients.

1. Disease and insect ratings are not absolute. Environmental conditions and certain cultural practices, such as continuous corn, play a critical role in disease development and insect infestation, which can predispose plants to secondary diseases such as stalk and ear rots. If conditions are severe, even hybrids rated as resistant can be adversely affected. Farmers should balance yield potential, hybrid maturity and cultural practices against the anticipated risk of disease or insect pressure. Ratings are based on interpretation of statistically analyzed results of studies conducted by Syngenta.

2. Yield: Estimated yield (Tons/ACr) and yield (Tons/A) into a single term. Use either yield (Tons/ACr) or hybrid yield (Tons/A).

3. Milk/Ton: An estimate of forage quality driven by stalk content, stalk digestibility and NDF.

4. Milk/A: Combines the estimate of forage quality (Milk/Ton) and yield (Tons/A) into a single term.

5. Beef/Ton: A proprietary estimate of forage quality driven by TDN.

6. Beef/A: Combines the estimate of forage quality (Beef/Ton) and yield (Tons/A) into a single term.

Enogen corn offers proven, high-yielding corn hybrids that can help deliver improved feed efficiency to help lower feed costs for feedlots and dairy operations.

- **Improved feed efficiency of about 5%** when fed as silage or grain.¹
- **Farm-proven results**, demonstrating excellent yield potential with elite genetics and traits.
- **Ultimate flexibility**, with the option to harvest as silage, high-moisture corn or grain.
- **Silage quality and consistency**, delivering greater levels of starch digestibility and more immediately available nutrients from day one after harvest and for more than eight months in the silo.²

Feeds Fast & Lasts Long

Starting at day one, Enogen silage delivers more available energy to your dairy cows²

Enogen corn contains a highly efficient alpha amylase enzyme that converts starch to usable sugars quickly, delivering more available energy for your dairy cows. Enogen grain or silage is not only high in energy, it’s also easily digestible, leading to increased post- ruminal and total tract digestion.³

From day one, when you chop and store Enogen silage properly, the alpha amylase enzyme works almost immediately to increase starch digestibility and improve silage quality.

Enogen silage may last longer than other silage³

- +42 hours of aerobic stability in a standard lab “bucket” test
- 12% higher level of acetate (which may act as a preservative)

Enogen silage may reduce methane emissions³

- 7% less methane per unit of milk produced¹
- 14-15% less methane per unit starch or dry matter intake

² Syngenta Contract Research 2019; estimated from linear regressions for each hybrid type, R² > 84% (Enogen, n = 104; Other, n = 64).
⁵ Kansas State University. (2013).
Enogen Corn Description Key

Hybrid Series: All hybrids within this series were developed from the same base genetics.

E indicates Enogen corn.

This three-digit number is the same as the relative maturity.

Randomly designated digits.

Trait versions available in this hybrid series.

Indicates product is part of the Field Forged Series.

Indicates new series for 2023.

Relative maturity of this hybrid series.

E100A3
NEW
RM 100

High-yielding dual-purpose hybrid combined with excellent nutritional value

- Strong agronomics that allow for movement across many environments
- Very good performance across all soil types
- Semi-flex ear type with sound agronomics for population flexibility

Insect protection, herbicide tolerance and other traits.

Primary (dark green) and, where applicable, secondary (light green) areas of adaptation for this hybrid series. Areas are suggested: performance may vary.

E092W5
NEW
RM 92

Superior grain yield potential, forage yields and high NDF digestion make this widely adapted hybrid a top dual-purpose corn for dairy producers

- Very high grain content and high NDF produce silage with high energy density
- Strong performance at above-average populations
- Outstanding drought and cold tolerance in the Northern Corn Belt and adapts well to all tillage systems

E095D3
NEW
RM 95

Strong adaptability across all soils

- Strong adaptability across all soils
- Excellent high-end yield potential for silage along with outstanding drought tolerance
- Tall, robust plant with high levels of forage starch
- Excellent disease tolerance to move east and north of zone

E100A33
NEW
RM 100

High yield potential, dual-purpose hybrid combined with excellent nutritional value

- Improved plant integrity with better roots and stalks for this maturity
- Strong ability to perform as a dual-purpose silage hybrid at higher management levels in rotated or continuous corn acres across the Central and Eastern Corn Belt
- Healthy, vigorous hybrid for cooler soils and all tillage environments
- High levels of forage starch and silage tonnage combined with strong NDFd to be a strong dual-purpose silage candidate
Lead Enogen hybrid for the central and eastern silage markets

- Excellent choice for continuous corn acres
- Stable performance with good heat stress tolerance
- Characteristics built for the silage market

RATING SCALE:

- DROUGHT
- DRYDOWN
- STAYGREEN
- STALK STRENGTH
- ROOT STRENGTH
- EMERGENCE

Robust Enogen hybrid may enhance feed efficiency

- Outstanding disease package for optimal performance
- Excellent tolerance to greensnap with good stalk strength
- Great flexibility for various soil types and crop rotation

RATING SCALE:

- DROUGHT
- DRYDOWN
- STAYGREEN
- STALK STRENGTH
- ROOT STRENGTH
- EMERGENCE

Outstanding stalks for late-season standability

- Very good staygreen and late-season intactness
- Strong disease tolerance to Northern Corn Leaf Blight and Gray Leaf Spot
- Good ear flex that provides population flexibility

RATING SCALE:

- DROUGHT
- DRYDOWN
- STAYGREEN
- STALK STRENGTH
- ROOT STRENGTH
- EMERGENCE

Broadly adapted with a complete agronomic package

- Strong choice for highly productive irrigated and dryland systems
- Tall plant type with good stalks for improved standability
- Great plant health and staygreen to promote late-season intactness

RATING SCALE:

- DROUGHT
- DRYDOWN
- STAYGREEN
- STALK STRENGTH
- ROOT STRENGTH
- EMERGENCE

Everyone’s looking for that little bit of an edge to be more efficient and more profitable. Enogen helped us improve starch digestibility. Efficiency is key in the dairy business. **Efficiency equals profitability.**

Jared Galbreath | DAIRY FARMER

RED NOB DAIRY, PENNSYLVANIA
Enogen Silage Hybrid Portfolio

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>MATURITY</th>
<th>AGRONOMIC CHARACTERISTICS</th>
<th>DISEASE TOLERANCE</th>
<th>ADAPTATION TO SOIL TYPES AND YIELD ENVIRONMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Emergence</td>
<td>Root Strength</td>
<td>Drought</td>
</tr>
<tr>
<td>E095D3</td>
<td>95</td>
<td>3 3 2 2 3 4</td>
<td>4 3 4 G B B B B</td>
<td></td>
</tr>
<tr>
<td>E100A3</td>
<td>100</td>
<td>3 3 2 2 4 4</td>
<td>3 4 4 - B G B B G</td>
<td></td>
</tr>
<tr>
<td>E105T1</td>
<td>105</td>
<td>2 5 2 2 3 4</td>
<td>4 3 3 G B B B B</td>
<td></td>
</tr>
<tr>
<td>E106Q6</td>
<td>106</td>
<td>3 3 2 4 4 5</td>
<td>6 4 4 B B F B G F</td>
<td></td>
</tr>
<tr>
<td>E108O1</td>
<td>80</td>
<td>3 3 1 1 5 4</td>
<td>- 4 2 G B G G B G</td>
<td></td>
</tr>
<tr>
<td>E086J9</td>
<td>86</td>
<td>3 3 1 3 3 5</td>
<td>- 4 4 G B F B B B</td>
<td></td>
</tr>
<tr>
<td>E092W5</td>
<td>92</td>
<td>2 5 1 4 3 4</td>
<td>- 4 - F B F B G G</td>
<td></td>
</tr>
<tr>
<td>E110F4</td>
<td>110</td>
<td>3 4 3 4 3 4</td>
<td>4 3 3 F F G G G G</td>
<td></td>
</tr>
<tr>
<td>E111V7</td>
<td>111</td>
<td>3 2 2 4 4 6</td>
<td>4 6 3 G G G G B G</td>
<td></td>
</tr>
<tr>
<td>E112S5</td>
<td>112</td>
<td>3 3 4 2 2 4</td>
<td>3 3 2 B F B B B F</td>
<td></td>
</tr>
<tr>
<td>E113N8</td>
<td>113</td>
<td>3 5 3 5 4 5</td>
<td>5 4 - F B B B B G</td>
<td></td>
</tr>
<tr>
<td>E115E5</td>
<td>115</td>
<td>2 2 3 3 4 4</td>
<td>4 3 - G G B B B F</td>
<td></td>
</tr>
<tr>
<td>E116K4</td>
<td>116</td>
<td>4 5 2 3 4 5</td>
<td>5 3 - G B F B B F</td>
<td></td>
</tr>
<tr>
<td>E112S5</td>
<td>112</td>
<td>3 3 4 2 2 4</td>
<td>3 3 2 B F B B B F</td>
<td></td>
</tr>
<tr>
<td>E116K4</td>
<td>116</td>
<td>4 5 2 3 4 5</td>
<td>5 3 - G B F B B F</td>
<td></td>
</tr>
<tr>
<td>E118D8</td>
<td>118</td>
<td>4 4 3 2 2 3</td>
<td>3 4 - B G G B G G</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Fast Forged Series

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>MATURITY</th>
<th>AGRONOMIC CHARACTERISTICS</th>
<th>PLANT HEIGHT</th>
<th>EAR HEIGHT</th>
<th>DISEASE TOLERANCE</th>
<th>DROUGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Emergence</td>
<td>Root Strength</td>
<td>Tall 9 Short</td>
<td>High 1 Low</td>
<td>Field Forged Optimized Hybrid</td>
</tr>
</tbody>
</table>

1. Disease and insect ratings are not absolute; environmental conditions and certain cultural practices, such as continuous corn, play a critical role in disease development and insect infestation, which can predispose plants to infection by disease or insect attack. In contrast, certain management practices, such as early planting, can reduce disease and insect pressure. Farmers should balance yield potential, hybrid maturity and cultural practices against the anticipated risk of disease or insect pressure. Ratings are based on interpretation of statistically analyzed results of studies conducted by Syngenta.

2. Disease and insect ratings are not absolute; environmental conditions and certain cultural practices, such as continuous corn, play a critical role in disease development and insect infestation, which can predispose plants to infection by disease or insect attack. In contrast, certain management practices, such as early planting, can reduce disease and insect pressure. Farmers should balance yield potential, hybrid maturity and cultural practices against the anticipated risk of disease or insect pressure. Ratings are based on interpretation of statistically analyzed results of studies conducted by Syngenta.
Product performance assumes disease presence.

© 2022 Syngenta. Important: Always read and follow label instructions. Some products may not be registered for sale or use in all states or counties. Please check with your local extension service to ensure registration status. Acuron, Avicta Complete Corn 250, Decis, Parco, Fierce Evr and Taintam Plus VaporGrip Technology are Restricted Use Pesticides.

Some seed treatment offers are separately registered products applied to the seed as a combined slurry. Always read individual product labels and treater instructions before combining and applying component products.

Important: Always read and follow label and bag tag instructions; only those labeled as tolerant to glufosinate may be sprayed with glufosinate ammonium-based herbicides. LibertyLink®, Liberty® and the Water Droplet logo are registered trademarks of BASF. HERCULEX® and the HERCULEX Shield are trademarks of Corteva Agriscience LLC. HERCULEX Insect Protection technology by Corteva Agriscience LLC. Under federal and local laws, only dicamba-containing herbicides registered for use on dicamba-tolerant varieties may be applied. See product labels for details and tank mix partners. NK® seed varieties are protected under granted or pending U.S. variety patents and other intellectual property rights, regardless of the trait(s) within the seed. The Enlist E3® soybean, LibertyLink®, LibertyLink® GT27®, Roundup Ready 2 Xtend® and XtendFlex® soybean traits may be protected under numerous United States patents. It is unlawful to save and replant seeds containing these traits for planting or transfer to others for use on a planting area. Only dicamba formulations that employ VaporGrip® Technology are approved for use with Roundup Ready 2 Xtend® and XtendFlex® soybeans. Only 2,4-D choline formulations with Colex-D® Technology are approved for use with Enlist E3® soybeans. The trademarks or service marks displayed or otherwise used herein are the property of a Syngenta Group Company. ENLIST® and ENLIST E3® are trademarks of Corteva Agriscience LLC. ENLIST® and ENLIST E3® are trademarks of Corteva Agriscience LLC. The ENLIST trait and ENLIST Weed Control System are trademarks owned and developed by Corteva Agriscience LLC. GT27® is a trademark of M.S. Technologies, L.L.C. and BASF. Roundup Ready 2 Xtend®, Roundup Ready 2 Yield® and YieldGard® VT Pro® are registered trademarks used under license from the Bayer Group. All other trademarks are the property of their respective third-party owners.

More information on Syngenta corn traits is available at http://www.biotradestatus.com/